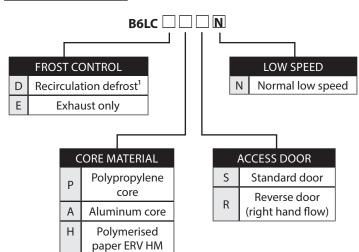


BROAN B6LC Part no. B6LC

560 to 690 CFM (0.4 in. w.g.)

FOR LIGHT COMMERCIAL APPLICATIONS

High CFM ventilation for small business owners concerned about indoor air quality (excess moisture, smoke, odors and cleanliness). Suitable for installation above a suspended ceiling, mechanical room


Suitable for installation above a suspended ceiling, mechanical room or suspended from a ceiling, this model delivers year-round comfort and sensible heat recovery with virtually no cross leakage. On this unit, the heat exchange efficiency can reach up to 66%.

- Only 24.5" high for false ceiling installation
- · Defrost system
- Two-speed control
- · Low voltage remote switch

REPAIRS AND MAINTENANCE

All parts of the B6LC such as the large access door and the entire motor sub-assembly can be removed for ease of maintenance. Furthermore, the electronic circuit board reduces electro-mechanical parts, minimizing repair time.

ORDERING EXAMPLE

¹When ordered, the recirculation defrost damper module is factory installed.

HEAT RECOVERY VENTILATOR AND ENERGY RECOVERY VENTILATOR

Control

 Built-in electronic circuit board ready to receive the VT1W main wall control.

Heat Recovery Cores/Energy Recovery Cores

Dimensions: 12" x 12" x 13.125" Exchange surface: 200 ft²

Weight: HRV Polypropylene: 9.2 lb.; Aluminum: 13.9 lb.

ERV Polymerised paper: 11.2 lb.

Type: Plate to plate core

Quantity: 2

Material: HRV polypropylene or aluminum

ERV polymerised paper

Warranty: HRV 15 years; ERV 5 years

FOR REMOVAL OF CORES, FANS, ETC.
THE ACCESS DOOR CAN BE REMOVED FROM CABINET
WITH ONLY 2" [51] OF CLEARANCE.

ACCESS DOOR

CORE

REVERSED DOOR OPTION

A MINIMUM OF 15" [381] CLEARANCE FROM ANY OBSTRUCTION IS REQUIRED

Option

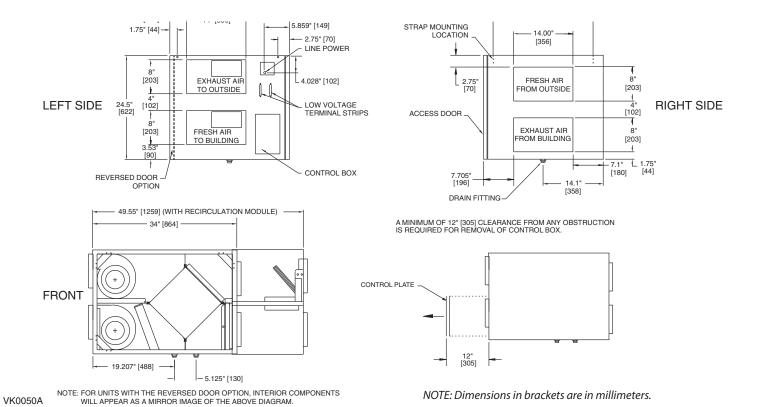
VK0103A

· Medium efficiency air supply filters

Recirculation or exhaust defrost

Outdoor 1	TEMPERATURE	DEFROST CYCLE (IN MINUTES)
°C	°F	Defrost/Operation
WARMER THAN -5	Warmer than 23	No defrost
-5 то -15	23 то 5	12/60
-15 то -30	5 то -21	12/24
-30 & LESS	-21 & LESS	12/12

Requirements and standards


- Complies with the CSA C22.2, no. 113 Standard applicable to ventilators
- Complies with UL Standard 1812 ducted Heat Recovery Ventilators or Energy Recovery Cores

Warranty

The B6LC unit is fully protected by a 2-year warranty on parts, the best in the industry, and the heat recovery cores are covered by a 15-year warranty.

Available at:			

DIMENSIONS AND SERVICE CLEARANCES: B6LC

PERFORMANCES

								HRV a	nd ERV	
	al Static sure	Power	HRV	High	ERV	High	Med	lium	Lo	w
in. w.g.	Pascal	Consumed Watt	cfm	L/s	cfm	L/s	cfm	L/s	cfm	L/s
0.1	25	778	720	340	716	338	660	311	595	281
0.2	50	774	710	335	701	331	646	305	586	276
0.3	75	765	698	329	683	322	632	298	576	272
0.4	100	750	685	323	664	313	617	291	564	266
0.5	125	730	670	316	642	303	600	283	550	259
0.6	150	706	650	307	618	292	580	274	528	249
0.7	175	676	625	295	590	278	547	258	500	236
0.8	200	641	590	278	550	259	505	238	455	215
0.9	225	600	540	255	495	233	450	212	400	189
1.0	250	555	470	222	400	189				

ENERGY PERFORMANCE

Po	POLYPROPYLENE CORE			Effectiveness		
	SUPPLY TEMPERATURE		ET LOW	SENSIBLE	LATENT	TOTAL
°F	°C	CFM	L/s	%	%	%
HEA	TING					
35	1.7	400	189	57	0	38
35	1.7	300	142	63	0	42
Coc	LING					
95	35	400	189	55	0	21
95	35	300	142	60	0	23

	ALUMINUM CORE			Effectiveness		
	SUPPLY TEMPERATURE		ET LOW	SENSIBLE	LATENT	TOTAL
°F	°C	CFM	L/s	%	%	%
HEA	TING					
35	1.7	400	189	54	0	36
35	1.7	300	142	57	0	38
Coo	LING					
95	35	400	189	52	0	20
95	35	300	142	56	0	21

POLYME	POLYMERIZED PAPER CORE (HM)			Effectiveness		
SUPPLY TEMPERATURE		NET AIR FLOW		SENSIBLE	LATENT	TOTAL
°F	°C	CFM	L/s	%	%	%
HEA	TING					
35	1.7	400	189	60	47	56
35	1.7	300	142	65	53	61
Cod	DLING					
95	35	400	189	60	38	46
95	35	300	142	63	45	52

EFFECTIVENESS

Unit Performance, Sensible Effectiveness					
HEATING SUPPLY TEMPERATURE	Airflow (cfm)				
35°F / 1.7°C	300	400	500	600	
POLYPROPYLENE	69	64	59	55	
ALUMINUM	62	59	56	55	
POLYMERIZED PAPER (HM)	77	75	73	71	

Unit Performance, Total Effectiveness				
COOLING SUPPLY TEMPERATURE		Airflo\	и (сғм)	
95°F / 35°C	300	400	500	600
POLYMERIZED PAPER (HM)	49	44	41	39

NOTE: All specifications are subject to change without notice.

Accoustic Noise Power Chart (dBA) at unit ports

Airflow	Fresh air to building port	Exhaust air from building port
685 CFM at 0.4 in. w.g.	76.9 dBA	61.3 dBA
586 CFM at 0.2 in. w.g.	66.1 dBA	52.5 dBA

The data shown on left chart come from measurement performed according to ISO 5136 Standard. These data represent the sound power directly measured at the fresh air distribution port and exhaust air from building port. To get the actual noise level in the room, consider noise attenuation resulting from total ductwork installation.

SPECIFICATIONS

- Model: B6LC
- · Total assembled weight:
- With polypropylene cores: 148 lb.
- With aluminum cores: 170 lb.
- With polymerised paper core: 157 lb.
- All duct connections: 8" x 14"
- Drains: 3/4" fittings
- · Housing: 20 ga. pre-painted steel
- Filters: 4 reticulated washable foam filters (20 ppi) and 2 optional disposable 30% medium efficiency filters
- Mounting: Reinforced rubber straps
- Insulation: 3/4" foil faced and 1" acoustic fiberglass wool
- Supply & Exhaust Blower motors:
 - Motor type: PSC motors with sealed: sleeved bearings,
 - 3 speeds (2 available to customer) - R.P.M.: 1625 - H.P.: 1/4

 - Fan type: Direct drive centrifugal blower 7 1/8" x 6"
 - Housing: Galvanised steel

- Fan Speed control:
- Low, medium & high speed
- 2 speeds available to user
- Low or medium speed is selected at the time of installation
- · Unit electrical characteristics:

Volts	Amps	Watts
125	5.7	640

B6LCd170321

Project:		REMARKS
Location:		
Model no.: B6LC		
Quantity:		
Submitted by:	Date:	

